Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 879: 163256, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37011689

RESUMO

Sponges from South America and Antarctica are evolutionarily closely related. Specific symbiont signatures that could differentiate these two geographic regions are unknown. This study aimed to investigate the microbiome diversity of sponges from South America and Antarctica. In total 71 sponge specimens were analyzed (Antarctica: N = 59, 13 different species; South America: N = 12, 6 different species). Illumina 16S rRNA sequences were generated (2.88 million sequences; 40K ± 29K/sample). The most abundant symbionts were heterotrophic (94.8 %) and belonged mainly to Proteobacteria and Bacteroidota. EC94 was the most abundant symbiont and dominated the microbiome of some species (70-87 %), comprising at least 10 phylogroups. Each of the EC94 phylogroups was specific to one genus or species of sponge. Furthermore, South America sponges had higher abundance of photosynthetic microorganisms (2.3 %) and sponges from Antarctica, the highest abundance of chemosynthetic (5.5 %). Sponge symbionts may contribute to the function of their hosts. The unique features from each of these two regions (e.g., light, temperature, and nutrients) possibly stimulate distinct microbiome diversity from sponges biogeographically distributed across continents.


Assuntos
Microbiota , Fotossíntese , RNA Ribossômico 16S/genética , Regiões Antárticas , Bacteroidetes/genética , Filogenia
2.
Braz J Microbiol ; 54(1): 239-258, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701110

RESUMO

A novel bacterial strain, designated GeG2T, was isolated from soils of the native Cerrado, a highly biodiverse savanna-like Brazilian biome. 16S rRNA gene analysis of GeG2T revealed high sequence identity (100%) to the alphaproteobacterium Novosphingobium rosa; however, comparisons with N. rosa DSM 7285T showed several distinctive features, prompting a full characterization of the new strain in terms of physiology, morphology, and, ultimately, its genome. GeG2T cells were Gram-stain-negative bacilli, facultatively anaerobic, motile, positive for catalase and oxidase activities, and starch hydrolysis. Strain GeG2T presented planktonic-sessile dimorphism and cell aggregates surrounded by extracellular matrix and nanometric spherical structures were observed, suggesting the production of exopolysaccharides (EPS) and outer membrane vesicles (OMVs). Despite high 16S rDNA identity, strain GeG2T showed 90.38% average nucleotide identity and 42.60% digital DNA-DNA hybridization identity with N. rosa, below species threshold. Whole-genome assembly revealed four circular replicons: a 4.1 Mb chromosome, a 2.7 Mb extrachromosomal megareplicon, and two plasmids (212.7 and 68.6 kb). The megareplicon contains a few core genes and plasmid-type replication/maintenance systems, consistent with its classification as a chromid. Genome annotation shows a vast repertoire of carbohydrate-active enzymes and genes involved in the degradation of aromatic compounds, highlighting the biotechnological potential of the new isolate. Chemotaxonomic features, including polar lipid and fatty acid profiles, as well as physiological, molecular, and whole-genome comparisons showed significant differences between strain GeG2T and N. rosa, indicating that it represents a novel species, for which the name Novosphingobium terrae is proposed. The type strain is GeG2T (= CBMAI 2313T = CBAS 753 T).


Assuntos
Fosfolipídeos , Solo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Ubiquinona/química , Ubiquinona/genética , Filogenia , Técnicas de Tipagem Bacteriana , Microbiologia do Solo , Ácidos Graxos/química , Genômica
3.
Sci Total Environ ; 847: 157474, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868367

RESUMO

Sponges have co-evolved with microbes for over 400 myr. Previous studies have demonstrated that sponges can be classified according to the abundance of microbes in their tissues as Low Microbial Abundance (LMA) and High Microbial Abundance (HMA). While LMA sponges rely mainly on water column microbes, HMA appear to rely much more on symbiotic fermentative and autotrophic microbes maintained in their tissues. However, it is unclear if this pattern holds when comparing different species of tropical sponges under extreme nutrient conditions and sediment loads in the water column, such as the Great Amazon Reef System (GARS), which covers an area of ~56,000 km2 off the Amazon River mouth. Sponges are the major GARS benthic components. However, these sponges' microbiome across the GARS is still unknown. Here, we investigated water quality, isotopic values (δ13C and δ15N), metagenomic and lipidomic profiles of sponges obtained from different sectors throughout the GARS. >180 million shotgun metagenomic reads were annotated, covering 22 sponge species. Isotopic and lipidomic analyses suggested LMA sponges rely on the Amazon River Plume for nutrition. HMA sponges (N = 15) had higher Roseiflexus and Nitrospira abundance, whereas LMA sponges (N = 7) had higher Prochlorococcus and Pelagibacter abundance. Functional data revealed that the LMA sponge microbiomes had greater number of sequences related to phages and prophages as well as electron transport and photophosphorylation which may be related to photosynthetic processes associated with the Prochlorococcus and Synechococcus found in the LMA. The higher phages abundance in LMA sponges could be related to these holobionts' reduced defense towards phage infection. Meanwhile, HMA sponge microbiomes had higher Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR abundance, which may be involved in defense against phage infection. This study sheds light on the nutrient fluxes and microbes from the Amazon River plume into the sponge holobionts.


Assuntos
Poríferos , Rios , Animais , Nutrientes , Filogenia , RNA Ribossômico 16S
4.
Amino Acids ; 54(11): 1477-1489, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35864259

RESUMO

Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.


Assuntos
Lipopeptídeos , Paenibacillus , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Staphylococcus aureus , Paenibacillus/genética , Paenibacillus/metabolismo , Antibacterianos/química , Escherichia coli/metabolismo
5.
J Hazard Mater ; 432: 128682, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306413

RESUMO

Polyethylene (PE) is the most widely used plastic and its accumulation on natural environments has reached alarming levels causing severe damage to wildlife and human health. Despite the significance of this global issue, little is known about specific metabolic mechanisms behind PE biodegradation-a promising and sustainable remediation method. Herein, we describe a novel role of nitrogen metabolism in the fragmentation and oxidation of PE mediated by biological production of NOx in three PE-degrading strains of Comamonas, Delftia, and Stenotrophomonas. Resultant nitrated PE fragments are assimilated and then metabolized by these bacteria in a process assisted by nitronate monooxygenases and nitroreductases to support microbial growth. Due to the conservation of nitrogen metabolism genes, we anticipate that this oxidative mechanism is potentially shared by other nitrifier and denitrifier microbes.


Assuntos
Comamonas , Polietileno , Biodegradação Ambiental , Comamonas/metabolismo , Humanos , Nitrogênio , Plásticos , Polietileno/metabolismo , Stenotrophomonas/metabolismo
6.
PLoS One ; 16(9): e0255083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34516585

RESUMO

Lignin is nature's largest source of phenolic compounds. Its recalcitrance to enzymatic conversion is still a limiting step to increase the value of lignin. Although bacteria are able to degrade lignin in nature, most studies have focused on lignin degradation by fungi. To understand which bacteria are able to use lignin as the sole carbon source, natural selection over time was used to obtain enriched microbial consortia over a 12-week period. The source of microorganisms to establish these microbial consortia were commercial and backyard compost soils. Cultivation occurred at two different temperatures, 30°C and 37°C, in defined culture media containing either Kraft lignin or alkaline-extracted lignin as carbon source. iTag DNA sequencing of bacterial 16S rDNA gene was performed for each of the consortia at six timepoints (passages). The initial bacterial richness and diversity of backyard compost soil consortia was greater than that of commercial soil consortia, and both parameters decreased after the enrichment protocol, corroborating that selection was occurring. Bacterial consortia composition tended to stabilize from the fourth passage on. After the enrichment protocol, Firmicutes phylum bacteria were predominant when lignin extracted by alkaline method was used as a carbon source, whereas Proteobacteria were predominant when Kraft lignin was used. Bray-Curtis dissimilarity calculations at genus level, visualized using NMDS plots, showed that the type of lignin used as a carbon source contributed more to differentiate the bacterial consortia than the variable temperature. The main known bacterial genera selected to use lignin as a carbon source were Altererythrobacter, Aminobacter, Bacillus, Burkholderia, Lysinibacillus, Microvirga, Mycobacterium, Ochrobactrum, Paenibacillus, Pseudomonas, Pseudoxanthomonas, Rhizobiales and Sphingobium. These selected bacterial genera can be of particular interest for studying lignin degradation and utilization, as well as for lignin-related biotechnology applications.


Assuntos
Bactérias/classificação , Biodiversidade , DNA Bacteriano/genética , Lignina/metabolismo , Consórcios Microbianos , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , DNA Bacteriano/análise , RNA Ribossômico 16S/análise
7.
Microbiol Resour Announc ; 10(32): e0049021, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34382826

RESUMO

We report the genome sequence of a polyethylene-degrading bacterial strain identified as Stenotrophomonas maltophilia strain PE591, which was isolated from plastic debris found in savanna soil. The genome was assembled in 16 scaffolds with a length of 4,751,236 bp, a GC content of 66.5%, and 4,432 predicted genes.

8.
Sci Rep ; 11(1): 13039, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158515

RESUMO

The Brazilian regions are still highly endemic areas for Canine morbillivirus [canine distemper virus (CDV)]. However, little is known regarding the genetic variability of the strain circulating in several Brazilian regions. Here, we report the first full-length genome and molecular characterization of CDV isolated from domestic dogs in the Brazilian Center-West region. Sequence alignment and phylogenetic analyses based on deduced amino acid and nucleotide sequences showed that the isolated strain is characterized as the South America-I/Europe genotype. However, it segregates into a CDV subgenotype branch. Interestingly, both H and F proteins have a gain of a potential N-glycosylation sites compared to the Onderstepoort vaccine strain. Therefore, this study provides a reference to further understand the epidemic and molecular characteristics of the CDV in Brazil.


Assuntos
Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/isolamento & purificação , Cães/virologia , Genoma Viral , Sequência de Aminoácidos , Animais , Sequência de Bases , Brasil , Cinomose/virologia , Genes Virais , Genótipo , Glicosilação , Filogenia , Recombinação Genética/genética , Seleção Genética , Proteínas Virais/química , Proteínas Virais/genética
9.
iScience ; 24(4): 102349, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870141

RESUMO

Biological nitrogen fixation (BNF) represents the main input source of N in tropical savannas. BNF could be particularly important for Brazilian savannas (known as Cerrado) that show a highly conservative N cycle. We evaluated the effects of seasonal precipitation and nutrient additions on the nifH gene abundance in soils from a long-term fertilization experiment in a Cerrado's native area. The experiment consists of five treatments: (1) control, (2) liming, (3) nitrogen (N), (4) nitrogen + phosphorus (NP), and (5) phosphorus (P) additions. The nifH gene sequence was related to Bradyrhizobium members. Seasonal effects on N-fixing potential were observed by a decrease in the nifH relative abundance from rainy to dry season in control, N, and NP treatments. A significant reduction in nifH abundance was found in the liming treatment in both seasons. The findings evidenced the multiple factors controlling the potential N-fixing by free-living diazotrophs in these nutrient-limited and seasonally dry ecosystems.

10.
PLoS One ; 16(1): e0245118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33449963

RESUMO

Functional screening of metagenomic libraries is an effective approach for identification of novel enzymes. A Caatinga biome goat rumen metagenomic library was screened using esculin as a substrate, and a gene from an unknown bacterium encoding a novel GH3 enzyme, BGL11, was identified. None of the BGL11 closely related genes have been previously characterized. Recombinant BGL11 was obtained and kinetically characterized. Substrate specificity of the purified protein was assessed using seven synthetic aryl substrates. Activity towards nitrophenyl-ß-D-glucopyranoside (pNPG), 4-nitrophenyl-ß-D-xylopyranoside (pNPX) and 4-nitrophenyl-ß-D-cellobioside (pNPC) suggested that BGL11 is a multifunctional enzyme with ß-glucosidase, ß-xylosidase, and cellobiohydrolase activities. However, further testing with five natural substrates revealed that, although BGL11 has multiple substrate specificity, it is most active towards xylobiose. Thus, in its native goat rumen environment, BGL11 most likely functions as an extracellular ß-xylosidase acting on hemicellulose. Biochemical characterization of BGL11 showed an optimal pH of 5.6, and an optimal temperature of 50°C. Enzyme stability, an important parameter for industrial application, was also investigated. At 40°C purified BGL11 remained active for more than 15 hours without reduction in activity, and at 50°C, after 7 hours of incubation, BGL11 remained 60% active. The enzyme kinetic parameters of Km and Vmax using xylobiose were determined to be 3.88 mM and 38.53 µmol.min-1.mg-1, respectively, and the Kcat was 57.79 s-1. In contrast to BLG11, most ß-xylosidases kinetically studied belong to the GH43 family and have been characterized only using synthetic substrates. In industry, ß-xylosidases can be used for plant biomass deconstruction, and the released sugars can be fermented into valuable bio-products, ranging from the biofuel ethanol to the sugar substitute xylitol.


Assuntos
Cabras/microbiologia , Metagenoma , Polissacarídeos/química , Rúmen/microbiologia , Xilosidases , Animais , Estabilidade Enzimática , Temperatura Alta , Cinética , Metagenômica , Especificidade por Substrato , Xilosidases/química , Xilosidases/genética
11.
Environ Microbiol Rep ; 13(2): 195-208, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484104

RESUMO

Methylated amines are ubiquitous in the environment and play a role in regulating the earth's climate via a set of complex biological and chemical reactions. Microbial degradation of these compounds is thought to be a major sink. Recently we isolated a facultative methylotroph, Gemmobacter sp. LW-1, an isolate from the unique environment Movile Cave, Romania, which is capable of methylated amine utilization as a carbon source. Here, using a comparative genomics approach, we investigate how widespread methylated amine utilization is within members of the bacterial genus Gemmobacter. Seven genomes of different Gemmobacter species isolated from diverse environments, such as activated sludge, fresh water, sulphuric cave waters (Movile Cave) and the marine environment were available from the public repositories and used for the analysis. Our results indicate that methylamine utilization is a distinctive feature of selected members of the genus Gemmobacter, namely G. aquatilis, G. lutimaris, G. sp. HYN0069, G. caeni and G. sp. LW-1 have the genetic potential while others (G. megaterium and G. nectariphilus) have not.


Assuntos
Aminas , Rhodobacteraceae , Aminas/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genômica , Filogenia , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Análise de Sequência de DNA
12.
Microb Ecol ; 81(3): 563-578, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32829441

RESUMO

Natural ponds in the Brazilian Cerrado harbor high biodiversity but are still poorly studied, especially their microbial assemblage. The characterization of the microbial community in aquatic environments is fundamental for understanding its functioning, particularly under the increasing pressure posed by land conversion and climate change. Here, we aim to characterize the structure (abundance, richness, and diversity) and composition of the Bacteria and Archaea in the sediment of two natural ponds belonging to different basins that primarily differ in size and depth in the Cerrado. Sediment samples were collected in the dry and rainy seasons and the transition periods between both. The structure and composition of Bacteria and Archaea were assessed by 16S rRNA gene pyrosequencing. We identified 45 bacterial and four archaeal groups. Proteobacteria and Acidobacteria dominated the bacterial community, while Euryarchaeota and Thaumarchaeota dominated the archaeal community. Seasonal fluctuations in the relative abundance of microbial taxa were observed, but pond characteristics were more determinant to community composition differences. Microbial communities are highly diverse, and local variability could partially explain the microbial structure's main differences. Functional predictions based in 16S rRNA gene accessed with Tax4Fun indicated an enriched abundance of predicted methane metabolism in the deeper pond, where higher abundance of methanogenic archaea Methanocella, Methanosaeta, and Methanomicrobiaceae was detected. Our dataset encompasses the more comprehensive survey of prokaryotic microbes in Cerrado's aquatic environments. Here, we present basic and essential information about composition and diversity, for initial insights into the ecology of Bacteria and Archaea in these environments.


Assuntos
Archaea , Lagoas , Archaea/genética , Bactérias/genética , Biodiversidade , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S/genética
13.
Braz J Microbiol ; 52(1): 325-333, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33155174

RESUMO

Strain K001 was isolated from a cyanobacterial culture derived from Abrolhos, a reef bank microbial mat (South Atlantic Ocean-Brazil). Cells of K001 are Gram stain-negative, catalase and oxidase-positive, non-motile, rod-shaped, and with or without appendages. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain K001 belongs to the genus Muricauda. The highest strain K001 16S rRNA gene identity, ANI, and dDDH, respectively, are with M. aquimarina (98.90%, 79.23, 21.60%), M. ruestringensis (98.20%, 80.82, 23.40%), and M. lutimaris (97.86%, 79.23, 22.70%). The strain grows at 15-37 °C and between 0.5 and 10% NaCl. The major fatty acids of strain K001 are iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The polar lipids are represented by phosphatidylethanolamine, three unidentified aminolipids, and three unidentified polar lipids. The major respiratory quinone is MK-6. The G+C content of the DNA of strain K001 is 41.62 mol%. Based on polyphasic analysis of strain K001, it was identified as a novel representative of the genus Muricauda and was named Muricauda brasiliensis sp. nov. The type strain is K001 (=CBMAI 2315T = CBAS 752T).


Assuntos
Cianobactérias/metabolismo , Flavobacteriaceae/classificação , Flavobacteriaceae/genética , Genoma Bacteriano , Filogenia , Composição de Bases , Brasil , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
14.
Int J Biol Macromol ; 165(Pt A): 822-834, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33011259

RESUMO

In this study, a GH3 family ß-glucosidase (Bgl7226) from metagenomic sequences of the Syntermes wheeleri gut, a Brazilian Cerrado termite, was expressed, purified and characterized. The enzyme showed two optimum pHs (pH 7 and pH 10), and a maximum optimum temperature of about 40 °C using 4-Nitrophenyl ß-D-glucopyranoside (pNPG) as substrate. Bgl7226 showed higher enzymatic activity at basic pH, but higher affinity (Km) at neutral pH. However, at neutral pH the Bgl7226 enzyme showed higher catalytic efficiency (kcat/Km) for pNPG substrate. Predictive analysis about the enzyme structure-function relationship by sequence alignment suggested the presence of multi-domains and conserved catalytic sites. Circular dichroism results showed that the secondary structure composition of the enzyme is pH-dependent. Small conformational changes occurred close to the optimum temperature of 40 o C, and seem important for the highest activity of Bgl7226 observed at pH 7 and 10. In addition, the small transition in the unfolding curves close to 40 o C is typical of intermediates associated with proteins structured in several domains. Bgl7226 has significant ß-glucosidase activity which could be attractive for biotechnological applications, such as plant roots detoxification; specifically, our group is interested in cassava roots (Manihot esculenta) detoxification.


Assuntos
Microbioma Gastrointestinal , Isópteros/microbiologia , Metagenoma , beta-Glucosidase , Animais , Estabilidade Enzimática , Especificidade por Substrato , beta-Glucosidase/química , beta-Glucosidase/genética
15.
Microorganisms ; 8(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992494

RESUMO

Eusocial animals, such as the termites, often build a nest-like structure called a mound that provides shelter with stable internal conditions and protection against predators. Termites are important components of the Brazilian Cerrado biota. This study aimed to investigate the bacterial community composition and diversity of the Syntermes wheeleri termite-mound soil using culture-independent approaches. We considered the vertical profile by comparing two different mound depths (mound surface and 60 cm) and seasonality with samplings during the rainy and dry seasons. We compared the mound soil microbiota to the adjacent soil without the influence of the mound to test the hypothesis that the Cerrado soil bacterial community was more diverse and more susceptible to seasonality than the mound soil microbiota. The results support the hypothesis that the Cerrado soil bacterial community is more diverse than the mound soil and also has a higher variability among seasons. The number of observed OTUs (Operational Taxonomic Units) was used to express bacterial richness, and it indicates that soil moisture has an effect on the community distribution and richness of the Cerrado samples in comparison to mound samples, which remain stable across seasons. This could be a consequence of the protective role of the mound for the termite colony. The overall community taxonomic profile was similar between soil samples, especially when compared to the taxonomic composition of the Syntermes wheeleri termite's gut, which might be explained by the different characteristics and functionality between the soil and the gut microbial community.

16.
BMC Microbiol ; 20(1): 13, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941452

RESUMO

BACKGROUND: Thaumarchaeota are abundant in the Amazon River, where they are the only ammonia-oxidizing archaea. Despite the importance of Thaumarchaeota, little is known about their physiology, mainly because few isolates are available for study. Therefore, information about Thaumarchaeota was obtained primarily from genomic studies. The aim of this study was to investigate the ecological roles of Thaumarchaeota in the Amazon River and the Amazon River plume. RESULTS: The archaeal community of the shallow in Amazon River and its plume is dominated by Thaumarchaeota lineages from group 1.1a, which are mainly affiliated to Candidatus Nitrosotenuis uzonensis, members of order Nitrosopumilales, Candidatus Nitrosoarchaeum, and Candidatus Nitrosopelagicus sp. While Thaumarchaeota sequences have decreased their relative abundance in the plume, Candidatus Nitrosopelagicus has increased. One genome was recovered from metagenomic data of the Amazon River (ThauR71 [1.05 Mpb]), and two from metagenomic data of the Amazon River plume (ThauP25 [0.94 Mpb] and ThauP41 [1.26 Mpb]). Phylogenetic analysis placed all three Amazon genome bins in Thaumarchaeota Group 1.1a. The annotation revealed that most genes are assigned to the COG subcategory coenzyme transport and metabolism. All three genomes contain genes involved in the hydroxypropionate/hydroxybutyrate cycle, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation. However, ammonia-monooxygenase genes were detected only in ThauP41 and ThauR71. Glycoside hydrolases and auxiliary activities genes were detected only in ThauP25. CONCLUSIONS: Our data indicate that Amazon River is a source of Thaumarchaeota, where these organisms are important for primary production, vitamin production, and nitrification.


Assuntos
Archaea/classificação , Genoma Arqueal , Rios/microbiologia , Análise de Sequência de DNA/métodos , Archaea/genética , Archaea/isolamento & purificação , Composição de Bases , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Filogenia
17.
J Ind Microbiol Biotechnol ; 46(11): 1517-1529, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31236777

RESUMO

Holocellulase production by Aspergillus niger using raw sugarcane bagasse (rSCB) as the enzyme-inducing substrate is hampered by the intrinsic recalcitrance of this material. Here we report that mild hydrothermal pretreatment of rSCB increases holocellulase secretion by A. niger. Quantitative proteomic analysis revealed that pretreated solids (PS) induced a pronounced up-regulation of endoglucanases and cellobiohydrolases compared to rSCB, which resulted in a 10.1-fold increase in glucose release during SCB saccharification. The combined use of PS and pretreatment liquor (PL), referred to as whole pretreated slurry (WPS), as carbon source induced a more balanced up-regulation of cellulases, hemicellulases and pectinases and resulted in the highest increase (4.8-fold) in the release of total reducing sugars from SCB. The use of PL as the sole carbon source induced the modulation of A. niger's secretome towards hemicellulose degradation. Mild pretreatment allowed the use of PL in downstream biological operations without the need for undesirable detoxification steps.


Assuntos
Aspergillus niger/enzimologia , Celulose/metabolismo , Glicosídeo Hidrolases/metabolismo , Saccharum/metabolismo , Aspergillus niger/genética , Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Hidrólise , Proteômica
18.
PLoS One ; 14(5): e0217594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141576

RESUMO

BACKGROUND: Canine morbillivirus (canine distemper virus, CDV) persists as a serious threat to the health of domestic dogs and wildlife. Although studies have been conducted on the frequency and risk factors associated with CDV infection, there are no comprehensive data on the current epidemiological magnitude in the domestic dog population at regional and national levels. Therefore, we conducted a cross-sectional study and included our results in a meta-analysis to summarize and combine available data on the frequency and potential risk factors associated with CDV infection. METHODS: For the cross-sectional study, biological samples from dogs suspected to have canine distemper (CD) were collected and screened for viral RNA. Briefly, the PRISMA protocol was used for the meta-analysis, and data analyses were performed using STATA IC 13.1 software. RESULTS: CDV RNA was detected in 34% (48/141) of dogs suspected to have CD. Following our meta-analysis, 53 studies were selected for a total of 11,527 dogs. Overall, the pooled frequency of CDV positivity based on molecular and serological results were 33% (95% CI: 23-43) and 46% (95% CI: 36-57), respectively. The pooled subgroup analyses of clinical signs, types of biological samples, diagnostic methods and dog lifestyle had a wide range of CDV positivity (range 8-75%). Free-ranging dogs (OR: 1.44, 95% CI: 1.05-1.97), dogs >24 months old (OR: 1.83, 95% CI: 1.1-3) and unvaccinated dogs (OR: 2.92, 95% CI: 1.26-6.77) were found to be positively associated with CDV infection. In contrast, dogs <12 months old (OR: 0.36, 95% CI: 0.20-0.64) and dogs with a complete anti-CDV vaccination (OR: 0.18, 95% CI: 0.05-0.59) had a negative association. CONCLUSION: Considering the high frequency of CDV positivity associated with almost all the variables analyzed in dogs, it is necessary to immediately and continuously plan mitigation strategies to reduce the CDV prevalence, especially in determined endemic localities.


Assuntos
Vírus da Cinomose Canina , Cinomose , RNA Viral , Animais , Estudos Transversais , Cinomose/sangue , Cinomose/epidemiologia , Cinomose/genética , Cinomose/prevenção & controle , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/metabolismo , Cães , Prevalência , RNA Viral/sangue , RNA Viral/genética
19.
PLoS One ; 14(5): e0216863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075115

RESUMO

S-layers commonly cover archaeal cell envelopes and are composed of proteins that self-assemble into a paracrystalline surface structure. Despite their detection in almost all archaea, there are few reports investigating the structural properties of these proteins, with no reports exploring this topic for halophilic S-layers. The objective of the present study was to investigate the secondary and tertiary organization of the Haloferax volcanii S-layer protein. Such investigations were performed using circular dichroism, fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The protein secondary structure is centered on ß-sheets and is affected by environmental pH, with higher disorder in more alkaline conditions. The pH can also affect the protein's tertiary structure, with higher tryptophan side-chain exposure to the medium under the same conditions. The concentrations of Na, Mg and Ca ions in the environment also affect the protein structures, with small changes in α-helix and ß-sheet content, as well as changes in tryptophan side chain exposure. These changes in turn influence the protein's functional properties, with cell envelope preparations revealing striking differences when in different salt conditions. Thermal denaturation assays revealed that the protein is stable. It has been reported that the S-layer protein N-glycosylation process is affected by external factors and the present study indicates for the first time changes in the protein structure.


Assuntos
Haloferax volcanii/química , Temperatura Alta , Glicoproteínas de Membrana/química , Metais/química , Salinidade , Haloferax volcanii/metabolismo , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/metabolismo , Metais/metabolismo , Desnaturação Proteica , Estrutura Secundária de Proteína
20.
Curr Microbiol ; 76(6): 687-697, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30953134

RESUMO

Although some previous studies have described the microbial diversity of termite in Brazil, the lack of studies about this subject is still evident. In the present study, we described by whole genome sequencing, the gut microbiota of seven species of termites (Termitidae) with different feeding habits from four Brazilian locations. For the litter species, the most abundant bacterial phylum was Firmicutes, where Cornitermes cumulans and Syntermes dirus (Syntermitinae) were identified. For the humus species, the most abundant bacterial phylum was Proteobacteria where three species were studied: Cyrilliotermes strictinasus (Syntermitinae), Grigiotermes bequaerti (Apicotermitinae), and Orthognathotermes mirim (Termitinae). For the wood termites, Firmicutes and Spirochaetes were the most abundant phyla, respectively, where two species were identified: Nasutitermes aquilinus and Nasutitermes jaraguae (Nasutitermitinae). The gut microbiota of all four examined subfamilies shared a conserved functional and carbohydrate-active enzyme profile and specialized in cellulose and chitin degradation. Taken together, these results provide insight into the partnerships between termite and microbes that permit the use of refractory energy sources.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbioma Gastrointestinal , Isópteros/microbiologia , Animais , Biodiversidade , Brasil , Comportamento Alimentar , Isópteros/fisiologia , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...